
RUNNING HEAD: Software  1 

 

 

 

 

 

 

 

 

 

 

Software for Aiding ARES, RACES, and Mars 

Vance Martin 

 

 

 

 

 

 

 

 

 

 

 

 



Software  2 

Introduction 

 “There is a significant service component to the amateur radio hobby that takes the form of 

three organizations, focused on service.  ARES, the Amateur Radio Emergency Service, and RACES, 

the Radio Amateur Civil Emergency Service, are both groups that are deployed during emergencies to 

assist with communications where traditional communication methods are inoperable, or need 

supplementing.  MARS, the Military Auxiliary Radio System, is a similar group, but is sponsored by 

the US Army, Navy, and Air Force, and is focused on providing communications support to the military 

during times of emergency or military need.  One of the key tools used by amateur radio operators in 

these groups are “go-kits” or “go-boxes.”  These kits are portable, self-contained radio stations that can 

be set up and operated at emergency locations.  The drawback is that the station requires an operator, 

which is not always safe or practical during an emergency.  This project will focus on writing a piece of 

the software package and combining it with some commercially available hardware, which would 

allow one of these self contained stations to be remotely controlled and operated.” (Martin, Project 

Proposal)   

Project Management Approach 

 As the sole executor and sponsor of this project, Vance Martin will be responsible for all phases 

of the project.  This will include creating and documenting the requirements for the project, creating the 

scope for the project, performing the necessary coding and code documentation, and creating the user 

guide for the produced product.  Throughout the project, input may be gathered from members of the 

Red Rose Repeater Association and the Lebanon Valley Society of Radio Amateurs as these groups 

both have members involved in organizations through the Amateur Radio Service and could be 

valuable resources when gathering additional input on the features such a software and hardware 

project should employ. 

Project Schedule 



Software  3 

This project will have a very condensed time-line, and will therefore be very specific in scope.  This 

scope will be detailed in later sections in this plan.  The preliminary schedule of activities for 

completion of this project are as follows: 

Week 1,  ending March 30th 2015: 

  Week one, which was already completed at the time of the preparation of this document, 

consists of identification of the project and creation of a high level proposal.  Week one also included 

some basic coding experiments to determine if the needed serial connections to the radio could be 

easily established. 

Week 2, ending April 6th, 2015: 

 Week two will be primarily focused on creation of the detailed Project Plan, and this document 

to outline it.  The project planning will include basic cost and risk analysis, and will also include the 

project requirements and scope.  Week two will also include some coding, based on the the items that 

will be fundamental to the project, and can be started while the detailed requirements and scope are 

created.  

Week 3, ending April 13th 2015: 

 Week three will start with final touches on the project plan, but will be primarily focused on 

writing the code for the project. 

Week 4, ending April 20th 2015: 

 Week four will consist primarily of writing the code for the project.  The end of this week will 

also include review of the in-code documentation for completeness, and preparation of an outline for 

the final user documentation.  If during week four, these tasks are completed in a timely enough 

fashion, a second code review will be performed to update code for execution speed and compactness. 

Week 5, ending April 27th 2015: 

 Week five will encompass the final creation of the user documentation, and preparation for final 



Software  4 

project report-out. 

Requirements 

 The primary objective of this project is to create a software object that can be utilized by other 

amateur radio operators who wish to develop their own user interface to control the operation of a 

Yaesu 857d model radio.  Because the software object is the primary item being developed, the only 

requirement for the program acting as the user interface is that it must be minimally viable, and able to  

demonstrate the functions of the object.  With this basic outline, the functional requirements for the 

software object are as follows: 

 The object must include functions to establish, connect, and disconnect to the radio via a serial 

interface. 

 The object must include functions to directly implement the CAT commands as available and 

outlined in the FT-857D Operators Manual.  These functions are detailed here: 

 Locking and unlocking the keypad on the radio’s control head. 

 Engaging and disengaging the radio’s push-to-talk circuitry, effectively switching the 

radio between transmit and receive. 

 Directly setting the operating frequency of the transceiver. 

 Directly setting the operating mode of the transceiver. 

 Engaging and disengaging the radio’s clarifier function. 

 Directly setting the clarifier offset direction and frequency. 

 Toggling between the radio’s two variable frequency oscillators, referred to as VFO-

A and VFO-B. 

 Engaging and disengaging the radio’s split operating mode function, allowing 

transmitting and receiving on two different frequencies. 



Software  5 

 Setting the radio’s repeater offset direction (plus, minus, or simplex.) 

 Directly setting the radio’s repeater offset frequency. 

 Engaging and disengaging the radios CTCSS and DCS encoders and decoders. 

 Directly setting the radio’s CTCSS tone. 

 Directly setting the radio’s DCS code. 

 Reading the current operating frequency and mode from the radio. 

 The Object must also include the following functions: 

 Increasing and decreasing the operating frequency by logical “step” amounts 

 Setting up transmit and receive frequencies along with engaging split operation 

 Setting up operation for a known repeater 

 Switching between “bands” and setting their standard modes (i.e. choosing 20 meter 

SSB changes the frequency to 14.150 and sets the operating mode to USB)  

 The Interface Program must provide a basic text menu and interface to provide access to, and 

implement all of the above functions, to demonstrate their functionality. 

 In addition to the functional requirements above, there are a number of non-functional 

requirements that specify items not directly related to the actions the object will perform.  First of these 

are the technical requirements, as outlined below. 

 The software must be able to be implemented on a Raspberry Pi single board computer, 

because they are readily available, inexpensive, and already very popular for use in the Ham 

Radio Community. 

 The programming language chosen for development of the object should be able to work on 

multiple platforms, but at a minimum must work with the Raspberry Pi hardware and the 

distribution of Linux that is generally packaged as the default operating system (Raspian). 



Software  6 

 The programming language chosen must be one which allows for rapid and simple 

development, changes, and maintenance. 

 The object created must be targeted specifically to the Yaesu 857d radio, to keep physical 

disk space used to a minimum. 

 The implementations that will most likely use this object are ones where the Raspberry Pi 

running the software will be remotely accessed via either SSH or via a VNC Server instance 

running on the Raspberry Pi.  Due to this fact, the design of the object and interface 

programing must not preclude the ability to run them in this fashion. 

 Wireless remote access will only be via “Broadband-Hamnet” (information available at 

www.broadband-hamnet.org) to prevent non-licenses individuals from controlling the radio. 

Therefore, the design of the object and interface program must not preclude the ability to 

operate in this manner. 

 The users of the created software object and interface program will be other developers, and 

amateur radio operators.  For this reason, and due to the technical requirements above, the usability 

requirements for the object and interface program are minimal.  The software needs to be usable from a 

command line interface, and use terms and methodologies that can be understood and used by someone 

with a minimum of a General Class Amateur Radio License. 

 The implementation of this software, and the hardware it is intended to run on, is specified so 

that it can easily be used “in the field” and as such, reliability and maintainability are critical.  The 

programming language must be chosen such that changes to the software can be made in the field, and 

implemented immediately.  The code written must also be clearly documented, and clearly written, so 

that an individual with reasonable knowledge of the chosen languages can read, understand, and 



Software  7 

maintain the software.  Lastly, a technical manual must be provided that describes the use, operation, 

and functions of both the object and the interface program. 

Scope 

 The scope of this project includes the development and design of the software object as outlined 

in the preceding requirements.  It also includes creating a minimally viable interface program, 

implemented on a minimally viable hardware platform, such that the functional and non-functional 

requirements can be demonstrated.   

 To meet the requirements listed for the programming language used to create the object, 

Python3 will be used. As a cross platform language, it will work excellently with Linux and the single 

board computers, and is designed to allow for rapid development and deployment.  The written code 

will include in-code documentation to make clear what each function is doing.  Each function 

definition within the class will be followed by a description of what the function does, a description of 

the arguments it takes, and a description of any object returned. Due to the condensed time-line of this 

project, the design focus of these functions will be on speed of developments.   

 The interface class will be a simple text based, menu-driven class, that will give the user access 

to all of the functions listed above, so that they can be demonstrated.  Due to the time constraints of the 

project, and the fact that the interface software is only intended to be minimally viable, the interface 

software will not incorporate in-depth input verification, and will assume that the user will, for the most 

part, be inputting proper values, where vales are requested.  The purpose of the interface software is 

only to demonstrate the functions of the created object, not to provide a full-featured software package. 

 The non-functional requirements for this project are mostly related to the hardware that the 

object needs to operate on, and in conjunction with.  To meet these requirements, the software will be 

developed and implemented on a Raspberry Pi single board computer, with the minimum amount of 



Software  8 

hardware needed to interface with the radio.  The Broadband-Hamnet connection to the Raspberry Pi 

will be provided through a Linksys WRT54G router, flashed to operate using the Broadband-Hamnet 

protocol.  The Raspberry Pi will use an Ethernet connection to this router.  The remote wireless link 

will be demonstrated by wireless connection to a second Linksys WRT54G.  The second router will 

have an Ethernet connection to the laptop that will serve as the remote-control station.   

 The following items are not included in the scope of this project: 

 The software, hardware, or implementation of streaming audio from the remote PC to the 

Raspberry Pi, or from the Raspberry Pi to the radio.  Audio streaming in these arrangements is 

usually provided via pre-packaged software, and will not be included in this project. 

 Creation of an actual “go-kit” or “go-box” radio station.  This project is focused on the software 

needed to implement these functions in a “go-kit” or “go-box”.  It is not intended to actually 

create one of these stations. 

 Access to the devices via the “Internet” or any publicly accessible network.  Because radio 

operation is a licensed activity, access to the device will only be via the Broadband-Hamnet 

mesh network. 

 Display or interface hardware to directly interact with the Raspberry Pi. Because the focus of 

this project is on remote access, human interface devices for the Pi are not required.  They may 

be provided for demonstration purposes, but are not part of the scope of this project.  

Cost Analysis 

 Costs incurred for this project will be minimal, as many of the items required are already on-

hand.  As it is an academic project, the only costs will be for the hardware required to demonstrate the 

non-functional requirements of the project, and to perform some basic testing and interface verification.    

In the event someone desires to completely replicate this project however,  a breakdown of all of the 



Software  9 

costs that would be incurred is provided below.  Most radio operators wishing to implement this object 

would however, have much of this hardware already, and the additional costs would be minimal. 

 

Item Approximate Cost 

Raspberry Pi $30 

TX/RX to DB9M RS232 serial host adapter $20 

Yaesu CT-62 CT cable $23 

2 Linksys WRT54G routers (no longer in 

production, available used) 

$20 

Ethernet Cables $15 

Yaesu FT-857D transceiver $850 

Basic Laptop (Running Linux.) Old used models 

are fine for this application 

$300 

 

 While no costs other than these are expected, any required or incidental costs will be the 

responsibility of Vance Martin. 

Risk Analysis 

 Due to the condensed time-line of this project, the primary risk facing the project is timely 

completion.  To mitigate the risk of not completing the project on time, the scope of this project has 

been kept narrow.  This is the reason the project is focusing primarily on the software object as its core 

deliverable, and has excluded streaming audio to the radio as a part of this project.  A secondary risk, 



Software  10 

while unlikely, has the potential to be catastrophic if it occurs.  This risk would be a hardware failure 

involving the transceiver, which would prevent completion of the project and would be quite costly to 

rectify.  Even though the risk is very small, steps such as connecting dummy loads during testing (to 

prevent potential transmitter damage) are being taken.   


