
YaesuControl

A Python Software Object

Background

 Primary Goal: Create a software object that
could be used:

 By individuals wanting to create “Rig Control”
software for use in Go-Kits

 On the popular Raspberry Pi computers

 In a way that allowed it to run if accessed remotely

 In Amateur Radio, this is done via “Broadband-Hamnet”

Background

 Secondary Goal: Create an Interface program
that could:

 Demonstrate the features of the software object

 Run on the popular Raspberry Pi computers

 Simulate the basic operation of the Transceiver

Background

 Secondary Goal: Demonstrate the software on
hardware that would most likely be used to
impliment it.

 Raspberry Pi

 WRT54G Router running “Broadband-Hamnet”

 All running on 12volts (to simulate operation on
battery power)

Requirements

 Locking and unlocking the keypad on the radio’s control head.

 Engaging and disengaging the radio’s push-to-talk circuitry,
effectively switching the radio between transmit and receive.

 Directly setting the operating frequency of the transceiver.

 Directly setting the operating mode of the transceiver.

 Engaging and disengaging the radio’s clarifier function.

 Directly setting the clarifier offset direction and frequency.

 Toggling between the radio’s two variable frequency oscillators,
referred to as VFO-A and VFO-B.

 Engaging and disengaging the radio’s split operating mode
function, allowing transmitting and receiving on two different
frequencies.

 Setting the radio’s repeater offset direction (plus, minus, or
simplex.)

 Directly setting the radio’s repeater offset
frequency.

 Engaging and disengaging the radios

 CTCSS and DCS encoders and decoders.

 Directly setting the radio’s CTCSS tone.

 Directly setting the radio’s DCS code.

 Reading the current operating frequency
and mode from the radio.

 Increasing and decreasing the operating
frequency by logical “step” amounts

 Setting up transmit and receive frequencies
along with engaging split operation

 Setting up operation for a known repeater

 Switching between “bands” and setting
their standard modes (i.e. choosing 20
meter SSB changes the frequency to 14.150

and sets the operating mode to USB)

Code Highlights

 Radio Commands sent in
Hexadecimal.

 5 byte blocks:

0x00 0x00 0x00 0x00 0x00

 Latin Encoding

Final Product(s)

 Project Proposal

 Project Plan

 Status Report

 yeasuControl.py

 radioInterface3.py

 yeasuControl class documentation

 radioInterface3 documentation

Demo &
Q&A

