YaesuControl

A Python Software Object



Background

» Primary Goal: Create a software object that
could be used:

- By individuals wanting to create “Rig Control”
software for use in Go-Kits

- On the popular Raspberry Pi computers

- In a way that allowed it to run if accessed remotely
« In Amateur Radio, this is done via “Broadband-Hamnet”



Background

» Secondary Goal: Create an Interface program
that could:

- Demonstrate the features of the software object
- Run on the popular Raspberry Pi computers
- Simulate the basic operation of the Transceiver



Background

« Secondary Goal: Demonstrate the software on
hardware that would most likely be used to
iImpliment it.

- Raspberry Pi
- WRT54G Router running “Broadband-Hamnet”

- All running on 12volts (to simulate operation on
battery power)

Sesled Rechargeabls
eeeee

MODEL PS-
12 V0t 55




Reguirements

Locking and unlocking the keypad on the radio’s control head.

Engaging and disengaging the radio’s push-to-talk circuitry,
effectively switching the radio between transmit and receive.

Directly setting the operating frequency of the transceiver.
Directly setting the operating mode of the transceiver.
Engaging and disengaging the radio’s clarifier function.
Directly setting the clarifier offset direction and frequency.

Toggling between the radio’s two variable frequency oscillators,
referred to as VFO-A and VFO-B.

Engaging and disengaging the radio’s split operating mode
function, allowing transmitting and receiving on two different
frequencies.

Setting the radio’s repeater offset direction (plus, minus, or
simplex.)

Directly setting the radio’s repeater offset
frequency.

Engaging and disengaging the radios
CTCSS and DCS encoders and decoders.
Directly setting the radio’s CTCSS tone.
Directly setting the radio’s DCS code.

Reading the current operating frequency
and mode from the radio.

Increasing and decreasing the operating
frequency by logical “step” amounts

Setting up transmit and receive frequencies
along with engaging split operation

Setting up operation for a known repeater

Switching between “bands” and setting
their standard modes (i.e. choosing 20
meter SSB changes the frequency to 14.150
and sets the operating mode to USB)



Code Highlights

yaesuControl.py - /Thome/vance/yaesuControl.py

RadiO COmmandS sent in File Edit Format Run Options Windows Help

Hexadecimal.

. #(i.e. 14.225) and sets the radio to that frequency. The frequency
5 byte blocks: 1.8 - 450Hhz

gmust be in the Amatesure allotment, from 1.8

())(()() ())(()() ())(()() ())(()() ())(()() 11 frequency > 1.79?99 i frequency < 450.00001:

freq = "%09.05f" % frequency
. . #formats the frequency float to the correct precision
Latin Encoding tand format
freq = (freq[:3] + freq[4:])
#takss out thes ' in preperation for creading the hex string

commandbytes = []

for i in rangs (0, len(freq), 2):
#steps through freq and makss ths hex string that the
#radio neseads
commandbytes.append (chr (int (fraq[i:i+2], 16)))

command = ''.join(commandbytes).encods('latin-1")
tcreates the hex command, minus the final control character =
#latin encoding ussd here because UTF incorrectly codes soms
#some of the radio commnds, resulting in sxtra characters

self.radioConnaction.write (command)

gwrites the command to ths radio
self.radioConnection.write(b" \x01")

#writes the control command for changs frequency

response = self.radioConnsction.read()




Final Product(s)

vance@raspberrypi: ~

Project Proposal

Project Plan

Status Report e —

yeasuControl.py s

vance@raspberrypi: ~

radiolnterface3.py T

yeasuControl class documentation

radiolnterface3 documentation




Demo &
Q&A



