
RUNNING HEAD: Documentation 1

yaesuControl Python Class Documentation

Vance Martin

Documentation 2

yaesuControl Python Class Documentation

 This class is designed to control the the serial interface between a computer running Linux and

a Yaesu 857d amateur radio transceiver. In the amateur radio community, the single board computers

such as the Beaglebone and the Raspberry Pi are very popular for use in the “Shack” and for various

radio related experiments and projects. This class was written with the intent of being able to run on a

Raspberry Pi computer, and to handle the communication between the Raspberry Pi and the transceiver,

so that operators can design their own user interface software for controlling the transceiver. While it is

quite likely that the class would operate on other operating systems and on other types of computers, it

has not been tested in these other applications, and would likely need some modifications to take

control of the appropriate communication ports on systems other than the Raspberry Pi. Another

primary goal of this class was to remain lightweight, so that operators who wish to design software to

allow remote control of the radio using the Raspberry Pi, can do so. This class imports the pySerial

class for performing the functions needed to set up the communications port, so any users of this class

will also need to download, and prepare for use, the pySerial module available at

pyserial.sourceforge.net/.

 This documentation will outline each class object attribute, the data to be passed into the

attribute, and any data returned by the attribute. Each section will also briefly outline possible use

cases for the attribute, where appropriate.

__init__ ()

 Initialization calls the pySerial class and creates a serial object. The port is set to the default for

the Raspberry Pi (/dev/ttyAMA0), and the communication port settings are set-up for establishing a

connection between the Raspberry Pi and the transceiver.

radioModes { }

 This attribute is a dictionary containing the available operating modes for the radio as

Documentation 3

the keys, and the piece of the hexadecimal command that the transceiver understands as their

equivalent. The mode abbreviations used are the standard abbreviations for amateur operations. The

available modes are:

 LSB: Lower Side Band

 USB:Upper Side Band

 CW: Continuous Wave (Morse Code)

 CWR: Continuous Wave, Reverse Side Band

 AM: Amplitude Modulation

 FM: Frequency Modulation

 NFM: Narrow Bandwidth Frequency Modulation

 DIG: Digital

 PKT: Packet

CTCSSTones { }

 The CTCSSTones attribute is a dictionary containing the standard CTCSS tones used for tone

squelch in amateur operations, as the keys. The values are the associated hexadecimal commands that

the transceiver understands as their equivalent. Below are the available CTCSS tones.

67.0 69.3 71.9 74.4 77.0

79.7 82.5 85.4 88.5 91.5

94.8 97.4 100.0 103.5 107.2

110.9 114.8 118.8 123.0 127.3

Documentation 4

131.8 136.5 141.3 146.2 151.4

156.7 159.8 162.2 165.5 167.9

171.3 173.8 177.3 179.9 183.5

186.2 189.9 192.8 196.6 199.5

203.5 206.5 210.7 218.1 225.7

229.1 233.6 241.8 250.3 254.1

DCSCodes { }

 The DCSCodes attribute is a dictionary containing the standard DCS codes used for digitally

coded squelch in amateur operations, as the keys. The values are the associated hexadecimal

commands that the transceiver understands as their equivalent. Below are the available DCS codes

.

006 007 015 017 021 023 025 026 031 032 036

043 047 050 051 053 054 065 071 072 073 074

114 115 116 122 125 131 132 134 141 143 145

152 155 156 162 165 172 174 205 212 214 223

225 226 243 244 245 246 251 252 255 261 263

265 266 271 274 306 311 315 325 331 332 343

346 351 356 364 365 371 411 412 413 423 431

432 445 446 452 454 455 462 464 465 466 503

Documentation 5

506 516 523 526 532 546 565 606 612 624 627

631 632 654 662 664 703 712 723 731 732 734

743 754

startRadioComm ()

 This method takes no arguments, initializes serial communication with the radio, and returns

nothing. This method must be called, to establish communications with the radio, prior to sending any

commands to the radio.

StopRadioComm ()

 This method takes no arguments, closes communication with the radio, and returns nothing.

This method should be called when done sending commands and receiving data from the radio, to

ensure that the communications port is released for other applications or uses.

lockOn ()

 This method takes no arguments, locks the radio keypad, and returns nothing. Locking the

radio keypad disables the pushbuttons and other controls on the face of the transceiver. When remotely

accessing the radio, it may be a best practice to engage the keypad lock to prevent someone from

accidentally changing radio settings at the radio, which could interfere with the intended remote

operations.

lockOff ()

 This method takes no arguments, unlocks the radio keypad, and returns nothing.

pttOn ()

 This method takes no arguments, engages the transceiver's push-to-talk circuitry, and returns

nothing. Engaging the push-to-talk circuitry effectively turns on the radio's transmitter, and opens the

Documentation 6

audio/data path so that voice or data sent to the radio through the inputs or microphone, can be

broadcast on the current transmitting frequency.

pttOff ()

 This method takes no arguments, disengages the transceiver's push-to-talk circuitry, and returns

nothing. This turns off the radio's transmitter, and puts the radio into receive mode.

clarifierOn ()

 This method takes no arguments, turns on the radio's clarifier function, and returns nothing.

The clarifier sets the radio to transmit and receive on different frequencies. The offset between the

transmit and receive frequencies is set using the clarifierOffset() method. More details on

clarifierOffset() are provided later in this document.

clarifierOff ()

 This method takes no arguments, turns off the radio's clarifier function, and returns nothing.

vfoToggle ()

 This method takes no arguments, toggles between the radio's two variable frequency oscillators,

and returns nothing. The Yeasu 857d is equipped with two variable frequency oscillators, referred to as

VFO A and VFO B. Unfortunately, the radio is not equipped with a feedback method to read through

the serial port which VFO is in use. Software that uses this method should either be written in a

manner that doesn't rely on knowing which VFO is in use, or should clearly direct the user to always

manually set the radio to the desired VFO before starting remote control.

splitOn ()

 This method takes no arguments, turns on the radio's split operation function, and returns

nothing. Similar to the clarifier function, the split operation function allows transmitting and receiving

on two different frequencies. It allows for greater offsets between transmit and receive however,

because it receives using one VFO and transmits using the other. A common practice is to choose a

Documentation 7

receive frequency on the current VFO, switch VFO's, choose a transmit frequency, and then switch

back to the first VFO, before engaging the split function.

splitOff ()

 This method takes no arguments, turns off the radio's split operation function, and returns

nothing.

readFreqAndMode ()

 This method takes no arguments, queries the radio for its frequency and mode, and returns a

string representing the currently active frequency and mode of the radio. The string returned is the

string representation of the data the radio returns. The first 8 characters represent the frequency:

 1st digit : 100MHz

 2nd digit: 10MHz

 3rd digit: 1MHz

 4th digit: 100kHz

 5th digit: 10kHz

 6th digit: 1kHz

 7th digit: 100Hz

 8th digit: 10Hz

 The last 2 characters represent the current operating mode of the radio:

 00: LSB

 01: USB

 02: CW

 82: CW-N

 03: CWR

 04: AM

Documentation 8

 06: WFM

 08: FM

 88: NFM

 0A: DIG

 0C: PKT

 For example, if the current frequency of the radio is 14.313 and the operating mode is USB,

calling readFreqAndMode() would return '0143130001'.

 readFrequency ()

 This method takes no arguments, performs operations using readFreqAndMode(), and returns a

floating point number representing the current operating frequency. The frequency is represented in

MHz, with a precision of up to 5 elements after the decimal.

 readMode ()

 This method takes no arguments, performs operations using readFreqAndMode(), and returns a

string representing the current operating mode of the radio. The possible returned values are the key

vales in the radioModes{ } dictionary described earlier in this document.

ReadThis ()

 This method takes no arguments, prints characters output by the radio, and returns nothing.

This function is primarily for troubleshooting. It prints one character of the radio output at a time, until

the radio is sending no data. Because this function prints directly to the screen, it is recommended that

it only be used for development purposes, or in cases where the application is text based, and run at a

command line.

setFrequency (frequency)

 This method takes a floating point number representing the desired frequency, sets the radio to

that frequency, and returns nothing. The value of frequency needs to be the desired frequency in MHz,

Documentation 9

and must be between, and including, 1.8 – 450 MHz.

setOperatingMode (mode)

 This method takes a string representing the desired operating mode, sets the radio to that

operating mode, and returns nothing. The value of mode must be one of the keys included in the

mode{ } dictionary described at the beginning of this document (case sensitive).

setClarifierOffset (kHzOffset)

 This method takes a floating point number representing frequency in kHz, sets the offset

amount for the clarifier function, and returns nothing. This method is intended to be used with the

setClarifierOn() and setClarifierOff() methods described earlier, to allow transmitting and receiving

on frequencies up to 9.99kHz apart. When using this function the transmit frequency remains constant,

but the receive frequency is offset by the amount specified by the value of kHzOffset.

setRptOffsetDirection (offsetDirection)

 This method takes a string, sets the offset direction for repeater operation based on the value of

the string, and returns nothing. Due to the internal circuitry of the radio, this function will only take

action on the radio when the radio is set to the FM operating mode, because it is intended for use with

repeaters, which operate using frequency modulation. The value of the string offsetDirection must be

either '+' for a repeater that has an input frequency higher than its output frequency, '-' for a repeater

that has an input frequency lower than its output frequency, or 'simp' for simplex (non-repeater

operation.)

setRptOffsetFrequency (mHzOffset)

 This method takes a floating point number representing frequency, sets the offset amount for

repeater operation, and returns nothing. The value of mHzOffset must be in MHz, and must be

between, and including, 0 to 99.99MHz. When using repeaters, the receive frequency displayed while

receiving remains the same, and the transmit frequency, which is offset by the value of mHzOffset and

Documentation 10

in the direction of setRptOffsetDirection(), will be displayed while transmitting.

setDCSmode (DCSflag)

 This method takes a string, sets the DCS mode of the transceiver based on the value of the

string, and returns nothing. The allowable values of DCSflag are 'both', 'encode', or 'decode'. When the

DCS mode is 'both' the transceiver will use the DCS code set by the method setDCSCode(), during

both transmitting and receiving. When the mode is 'encode' it will only use the code when transmitting,

and when the mode is 'decode' the it will only use the code when receiving. Due to the radio's internal

design, this function will only take action on the radio when the radio is in FM operating mode.

Additionally, the 'encode' and 'decode' modes will only work if split CTCSS/DCS encoding is first

enabled through the radios internal menu (menu item 097.)

setCTCSSmode (CTCSSflag)

 This method takes a string, sets the CTCSS mode of the transceiver based on the value of the

string, and returns nothing. The allowable values of CTCSSflag are 'both', 'encode', or 'decode'. When

the CTCSS mode is 'both' the transceiver will use the CTCSS tone set by the method setCTCSSTone(),

during both transmitting and receiving. When the mode is 'encode' it will only use the code when

transmitting, and when the mode is 'decode' it will only use the code when receiving. Due to the radio's

internal design, this function will only take action on the radio when the radio is in FM operating mode.

Additionally, the 'encode' and 'decode' modes will only work if split CTCSS/DCS encoding is first

enabled through the radios internal menu (menu item 097.)

setCTCSSTone (toneTX, toneRX)

 This method takes two floating point numbers, sets the CTCSS tones used for transmit (encode)

and receive (decode), and returns nothing. The value of toneTX must be one of the keys in the

dictionary CTCSSTones{ } described earlier in this document, and is used to set the tone used during

transmitting. The value of toneRX must also be one of the keys in the dictionary CTCSSTones{ }, and

Documentation 11

is used to set the tone used during receiving. The values of toneTX and toneRX will often be the same,

as most repeaters use the same tone for transmit and receive.

setDCSCode (codeTX, codeRX)

 This method takes two integers, sets the DCS code used for transmit (encode) and receive

(decode), and returns nothing. The value of codeTX must be one of the keys in the dictionary

DCSCodes{ } described earlier in this document, and is used to set the code used during transmitting.

The value of codeRX must also be one of the keys in the dictionary DCSCodes{ }, and is used to set

the code used during receiving. The values of codeTX and codeRX will often be the same, as most

repeaters use the same codes for transmit and receive.

increaseFrequency (stepUp)

 This method takes a floating point number representing frequency, increases the frequency of

the radio, and returns nothing. The value of stepUp is in MHz, and represents the amount by which the

operating frequency should be increased. Although there is a separate method for decreasing

frequency, this method can also by used in decrease frequency, but using a negative value for stepUp.

decreaseFrequency (stepDown)

 This method takes a floating point number representing frequency, decreases the frequency of

the radio, and returns nothing. The value of stepDown is in MHz, and represents the amount by which

the operating frequency should be decreased. Although there is a separate method for increasing

frequency, this method can also by used in increase frequency, but using a negative value for

stepDown.

splitOperation (splitOffset, receiveFrequency)

 This method takes two floating point numbers representing frequency, sets up the radio for split

operations, engages split operations, and returns nothing. The value of splitOffset, either negative or

positive, determines the distance between the transmit and receive frequencies. The value of

Documentation 12

receiveFrequency sets the receive frequency for operations. When operating in split mode, the

transceiver will be receiving on the frequency set by receiveFrequency, and when transmitting, will

adjust the frequency based on the value of splitOffset.

repeaterSetup (repeaterOutput, rptOffset, direction,toneORdcs, tone)

 This method takes several arguments as detailed below, sets up the radio for basic repeater

operations, and returns nothing. This method works primarily by calling other methods already

described , and exists simply to have one method that will work for setting up operations on most

repeaters. This function is designed to work with basic repeaters, and will not work for repeaters with

separate transmit and receive tones or codes. The arguments needed for this method are:

 repeaterOutput: This should be a floating point number that represents the repeaters output

frequency (the users receiving frequency) in MHz. It is set using the setFrequency() method.

 rptOffset: This is a floating point number representing the desired repeater offset distance. It is

set using setRptOffsetFrequency(), so please see the associated section in this document for allowable

values and details.

 direction: This is a string representing the the desired repeater offset direction. It is set using

setRptOffsetDirection(), so please see the associated section in this document for allowable values and

details.

 toneORdcs: This is a string that is used to identify if the repeater to be used uses CTCSS or

DCS encoding. A value of 't' identifies that CTCSS tones will be used, and a value of 'd' identifies that

DCS encoding will be used.

 tone: This is a floating point number or an integer that represents the tone or code to be used for

CTCSS or DCS encoding. It is set using either setCTCSSTone() or setDCSCode(), so please so the

associated sections in this document for allowable values and details.

bandSelection (band, mode)

Documentation 13

 This method takes two strings, sets the radio to a specific frequency and mode, and

returns nothing. This method is designed to mimic the functions performed by the band selection

buttons on the front of most modern radios. The value of band indicates the desired frequency band,

and the value of mode indicates which portion of the band to choose. Calling this function sets the

frequency to the low end of the selected portion of the chosen band. Allowable values are:

 Band: '160m', '80m', '40m', '30m', '20m', '17m', '15m', '12m', '10m', '6m', '2m', '70cm'

 Mode: 'd', for the digital portion of the band; any other value for the voice portion of the band.

